A dynamic model to optimize municipal electric power systems by considering carbon emission trading under uncertainty
Y. Zhu,
Y.P. Li,
G.H. Huang,
Y.R. Fan and
S. Nie
Energy, 2015, vol. 88, issue C, 636-649
Abstract:
In this study, a FFSP (full-infinite fuzzy stochastic programming) method is developed for planning MEPS (municipal electric power systems) associated with GHG (greenhouse gas) control under uncertainty. FFSP can deal with multiple uncertainties presented in terms of fuzzy sets, functional intervals, and random variables. FFSP is also applied to a case study of Beijing for managing MEPS, and reducing the GHG emission through introducing the EU ETS (European Union greenhouse gas emission trading scheme). The results indicate that reasonable solutions have been generated, which can be used for generating schemes of energy resources, electricity production/allocation, and capacity expansion under various economic costs and GHG reduction requirements. The case study demonstrates that FFSP can increase the abilities of reflecting complexities for dynamics of capacity expansion and interaction of multiple uncertainties in MEPS. The results allow in-depth analyses of trade-offs between GHG mitigation and economic objective as well as those between system cost and decision makers' satisfaction degree. Besides, this study can also provide an example to help China construct domestic carbon trading market at municipal scale for addressing the challenges of global climate change.
Keywords: Carbon trading; Electric power systems; Fuzzy sets; Optimization; Stochastic programming; Uncertainty (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215007094
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:88:y:2015:i:c:p:636-649
DOI: 10.1016/j.energy.2015.05.106
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().