EconPapers    
Economics at your fingertips  
 

Fast pyrolysis of corn stover using ZnCl2: Effect of washing treatment on the furfural yield and solvent extraction of furfural

Seung-Jin Oh, Gyung-Goo Choi and Joo-Sik Kim

Energy, 2015, vol. 88, issue C, 697-702

Abstract: To produce a bio-oil having a high concentration of furfural, corn stover was fast-pyrolyzed using ZnCl2 in a fluidized bed reactor at 330–430 °C. The effects of various parameters such as reaction temperature, water- and acid-washing prior to pyrolysis, and ZnCl2 content on the product and furfural yields were investigated. Moreover, solvent extraction was conducted using toluene at different mass ratios of bio-oil/toluene to recover furfural from the obtained bio-oil. The maximum yield of bio-oil was 59 wt%. The bio-oil mainly comprised acetic acid, α-hydroxyketones, and furfural. The maximum furfural yield was 11.5 wt% when the feed material was water-washed, impregnated with 18.5 wt% ZnCl2, and pyrolyzed. Although acid-washing removed alkali and alkaline earth metals much more efficiently than water-washing, water-washing was better than acid-washing for the furfural production. Toluene extraction was very effective to recover furfural from bio-oil. The maximum recovery rate (82%) was achieved at a bio-oil/toluene ratio of 1:4.

Keywords: Furfural; Corn stover; Pyrolysis; Bio-oil; Pretreatment; Extraction (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215007033
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:88:y:2015:i:c:p:697-702

DOI: 10.1016/j.energy.2015.05.101

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:88:y:2015:i:c:p:697-702