Thermodynamic evaluation of a geothermal power plant for advanced exergy analysis
Ali Keçebaş and
Harun Gökgedik
Energy, 2015, vol. 88, issue C, 746-755
Abstract:
As a result of decreasing fossil fuel resources and their adverse impacts on the environment, interest in renewable energy resources, particularly geothermal energy, has been revived. Finding approaches that are more accurate and systematic to the energy system development is of great importance for the exploitation of geothermal energy. The aim of this study was to carry out both conventional and advanced exergy analyses of an existing geothermal binary power system. In this way, in-depth information was collected about the exergy destroyed in the system and its parts. Through advanced analysis, it became possible to investigate the interactions between the system components and the actual performance of the reasonable improvements. The results show that the order of the primary improved components is CON 1, TURB 1 and VAP 2 for the conventional analysis and CON 1, CON 2 and PRE-HE 1 for the advanced analysis. The results of the advanced analysis were found to be more qualified than the results of the conventional one. The improvements made to the system, increased the modified exergy efficiency to 18.26%, while the total system efficiency was found to be 9.60% in the real conditions.
Keywords: Geothermal energy; Power plant; Exergy destruction; Advanced exergy analysis; Buildings (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215006969
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:88:y:2015:i:c:p:746-755
DOI: 10.1016/j.energy.2015.05.094
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().