Production of bioethanol from apple pomace by using cocultures: Conversion of agro-industrial waste to value added product
Ezgi Evcan and
Canan Tari
Energy, 2015, vol. 88, issue C, 775-782
Abstract:
Direct fermentation of cellulosic biomass to bioethanol has been very promising and hence attracted attention in recent years. In this study, bioethanol production from apple pomace hydrolysate (agro-industrial waste product) was investigated by coculturing Trichoderma harzianum, Aspergillus sojae and Saccharomyces cerevisiae using statistical approaches. Screening and optimization experiments were conducted in order to determine the significant factors and their optimum levels for maximum bioethanol production. Inoculation rates, aeration and agitation speed were considered as factor variables and bioethanol production as response variable. Highest bioethanol (EtOH) concentration and ethanol yield on total reducing sugar content (YP/S) were 8.748 g/L and 0.945 g/g, respectively. Optimum conditions were 6% (w/v) inoculation rates of T.harzianum and A.sojae, and 4% (v/v) inoculation rate of S.cerevisiae with vented aeration method and agitation speed of 200 rpm. To best of our knowledge to date, no reports are available in literature regarding the coculturing of T.harzianum, A.sojae and S.cerevisiae for bioethanol production. Therefore, this study will serve as a base line of initial studies in this field. The method can create a renewable alternative feedstock for fossil fuel production and suggest a feasible solution to multiple environmental problems simultaneously creating a sink for waste utilization.
Keywords: Aspergillus sojae; Apple pomace; Bioethanol; Green process; Saccharomyces cerevisiae; Trichoderma harzianum (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215006921
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:88:y:2015:i:c:p:775-782
DOI: 10.1016/j.energy.2015.05.090
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().