EconPapers    
Economics at your fingertips  
 

Methanol-gasoline Dual-fuel Spark Ignition (DFSI) combustion with dual-injection for engine particle number (PN) reduction and fuel economy improvement

Hui Liu, Zhi Wang, Yan Long, Shouzhi Xiang, Jianxin Wang and Scott W. Wagnon

Energy, 2015, vol. 89, issue C, 1010-1017

Abstract: To meet the near future emissions legislations of SI (spark ignition) internal combustion engines, this paper presents an experimental study on the M-G DFSI (Methanol-Gasoline Dual-fuel Spark Ignition) combustion for reducing PN (particle number) emissions and improving fuel economy in a high compression ratio gasoline engine. M-G DFSI was operated using port-injection of a highly oxygenated, high latent heat and high octane number fuel to reduce PN emissions and improve fuel economy, direct injection of a high energy density and high volatility fuel to obtain fast load response and high load. The effects of the ratio of methanol to gasoline during DFSI at stoichiometric conditions on PN reduction and fuel economy improvement were investigated. As the proportion of PFI-Methanol increases, the absolute and relative BSFCequivalent improvement in terms of fuel economy will be extended almost linearly. Also, both the nucleation mode and accumulation mode of PN emissions drops dramatically. Furthermore, there is an optimal PFI-methanol mass fraction value to get sufficient fuel economy improvement and PN emissions reduction while reaching the peak performance. It can be shown that Methanol-Gasoline DFSI is a potential combustion strategy to reduce PN emissions effectively and significantly improve fuel economy in practical applications of gasoline engines.

Keywords: Methanol-gasoline combustion; Dual-fuel spark ignition; PIDI (Port fuel injection and direct injection); Particle number; Size spectrum (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215008075
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:89:y:2015:i:c:p:1010-1017

DOI: 10.1016/j.energy.2015.06.051

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:89:y:2015:i:c:p:1010-1017