Improved performance of dye-sensitized solar cells with patterned fluorine-doped tin oxide electrodes
Yu-Chao Wang and
Chun-Pei Cho
Energy, 2015, vol. 89, issue C, 277-282
Abstract:
Patterned fluorine-doped tin oxide electrodes for dye-sensitized solar cells were fabricated by a facile wet etching method. The pattern depth could be controlled by altering etching time. Most dye-sensitized solar cells with patterned fluorine-doped tin oxide electrodes exhibited larger photocurrents. The energy conversion efficiency gradually increased with increasing etching time and obtained a maximum of 7.71% when etching time was 240 s. Then it dropped abruptly if etching duration was more prolonged. An optimum pattern depth is required to achieve the highest performance. The improved performance could be mainly attributed to enhanced light harvesting and scattering due to larger amount of titanium dioxide nanoparticles filled in the circular pattern leading to more dye adsorption. The charge transfer impedance at the titanium dioxide/electrolyte interface also affected the performance of dye-sensitized solar cells. By appropriate etching for surface patterning of fluorine-doped tin oxide electrodes, the device performance had a 16% improvement, which was more efficient than merely adding layer of titanium dioxide nanoparticles on non-patterned fluorine-doped tin oxide.
Keywords: Dye-sensitized solar cell; DSSC; Wet etching; Pattern; Fluorine-doped tin oxide; FTO (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215007550
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:89:y:2015:i:c:p:277-282
DOI: 10.1016/j.energy.2015.05.133
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().