EconPapers    
Economics at your fingertips  
 

Morphology dependent change in photovoltage generation using dye-Cu doped ZnO nanoparticle mixed system

Poonam Bandyopadhyay, Papiya Nandy, Ruma Basu and Sukhen Das

Energy, 2015, vol. 89, issue C, 318-323

Abstract: The present report deals with the studies on hybrid photoelectrochemical cell containing a commonly used dye, phenosafranine and Cu doped ZnO nanoparticles/nanoflakes for conversion of solar energy to electrical energy. The cell consisting nanoflakes yielded voltage of high magnitude (∼784 mV), good storage duration (∼60 h) and better energy conversion efficiency (3.82%) compared to other similar cells. The particle size and morphology of the nanomaterials were determined with X-ray diffraction and electron microscopy studies. Absorption spectra of the dye-nanomaterial mixed system indicated that the absorbance of dye molecules increased with addition of nanomaterials due to adsorption of dye molecules on the surface of nanomaterials, which facilitated incident photon absorption. Presence of planar lipid membrane hindered the back recombination of photoexcited charges causing radical increase in voltage generation, efficiency and storage duration.

Keywords: Copper doped zinc oxide nanoparticles; Phenosafranine; Photovoltage; Photoelectrochemical cell; Energy conversion efficiency; Surface area (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215007495
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:89:y:2015:i:c:p:318-323

DOI: 10.1016/j.energy.2015.05.127

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:89:y:2015:i:c:p:318-323