EconPapers    
Economics at your fingertips  
 

A comparative study between artificial neural networks and support vector regression for modeling of the dissipated energy through tire-obstacle collision dynamics

Hamid Taghavifar, Aref Mardani and Haleh Karim Maslak

Energy, 2015, vol. 89, issue C, 358-364

Abstract: Energy dissipation control has long been synthesized addressing the trafficking of wheeled vehicles. Wheel-obstacle collision has attracted the studies more on ride comfort, stability, maneuvering, and suspension purposes. This paper communicates, for the first time, the energy dissipation analysis through tire-obstacle collision that frequently occurs for the wheeled vehicles particularly those of off-road vehicles. To this aim, a soil bin facility equipped with a single wheel-tester is employed considering input parameters of wheel load, speed, slippage, and obstacle height each at three different levels. In the next step, the potential of classic artificial neural networks was appraised against support vector regression with the two kernels of radial basis function and polynomial function. On account of performance metrics, it was revealed that radial basis function based support vector regression is outperforming the other tested methods for the prediction of dissipated energy through tire-obstacle collision dynamics. The details are documented in the paper.

Keywords: Energy dissipation; Off-road vehicles; Modeling; SVR (support vector regression); ANN (artificial neural network) (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215007446
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:89:y:2015:i:c:p:358-364

DOI: 10.1016/j.energy.2015.05.122

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:89:y:2015:i:c:p:358-364