EconPapers    
Economics at your fingertips  
 

Assessing the global sustainability of different electricity generation systems

Juan José Cartelle Barros, Manuel Lara Coira, María Pilar de la Cruz López and Alfredo del Caño Gochi

Energy, 2015, vol. 89, issue C, 473-489

Abstract: A model is presented for assessing the global sustainability of power plants. It uses requirement trees, value functions and the analytic hierarchy process. The model consists of 27 parameters and makes it possible to obtain a sustainability index for each conventional or renewable energy plant, throughout its life-cycle. Here the aim is to make society aware of the sustainability level for each type of power system. As a result, decision making can be done with greater objectivity in both the public and private sectors. The model can be useful for engineers, researchers and, in general, decision makers in the energy policy field. With the exception of biomass fuels, the results obtained reinforce the idea that renewable energies make a greater contribution to sustainable development than their conventional counterparts. Renewable energies have a sustainability index that varies between 0.39 and 0.80; 0 and 1 being the lowest and highest contribution to sustainability, respectively. On the other hand, conventional power plants obtained results that fall between 0.29 and 0.57. High temperature solar-thermal plants, wind farms, photovoltaic solar plants and mini-hydroelectric power plants occupy the first four places, in this order.

Keywords: Global sustainability; MIVES; Analytic hierarchy process; Requirement trees; Value functions; Power plants (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (34)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421500732X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:89:y:2015:i:c:p:473-489

DOI: 10.1016/j.energy.2015.05.110

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:89:y:2015:i:c:p:473-489