Platinum–boron doped graphene intercalated by carbon black for cathode catalyst in proton exchange membrane fuel cell
H.N. Yang,
D.C. Lee,
K.W. Park and
W.J. Kim
Energy, 2015, vol. 89, issue C, 500-510
Abstract:
In order to enhance the electrochemical properties, especially durability and cell performance in proton exchange membrane fuel cell, electron deficient boron is doped into graphene, followed by deposition of Pt nanoparticles. Successful synthesis of Pt-boron doped graphene (Pt–B–Gr) by pyrolytic process is confirmed by X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and Transmission electron microscopy analyses. Pt–B–Gr is intercalated by different amount of CB (carbon black) based on Pt–B–Gr/CBx (x = 0.0, 0.2, 0.3, 0.4) and applied to cathode in proton exchange membrane fuel cell. The ECSA (electrochemical active surface area) is increased with CB content up to 30 wt.% of Pt–B–Gr from 21.4 to 33.6 m2 g−1 beyond which it is rather slightly decreased to 29.6 m2 g−1. The ADT (accelerated durability test) is conducted where the ECSA is compared at every 400 cycles up to 1200 cycles for durability. The result exhibits that boron doping into graphene significantly enhances the durability. It might be attributed to more tight binding between Pt and B due to the electron transfer from graphene to boron. The cell performance is enhanced and it is attributed to the combined effect of B-doping and intercalation.
Keywords: Boron doping; Graphene; Intercalation; Carbon black; Cell performance; Durability (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215007306
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:89:y:2015:i:c:p:500-510
DOI: 10.1016/j.energy.2015.06.019
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().