EconPapers    
Economics at your fingertips  
 

Investigation on the performance of the supercritical Brayton cycle with CO2-based binary mixture as working fluid for an energy transportation system of a nuclear reactor

Lian Hu, Deqi Chen, Yanping Huang, Le Li, Yiding Cao, Dewen Yuan, Junfeng Wang and Liangming Pan

Energy, 2015, vol. 89, issue C, 874-886

Abstract: In this study, the performance of a SBC (supercritical gas Brayton cycle) using CO2-based binary mixtures as the working fluids have been studied. Based on the thermodynamic analyses, an in-house code has been developed to determine the cycle efficiency and the amounts of heat transfer in the HTR (high temperature recuperator) and the LTR (low temperature recuperator) with different CO2/additive gas ratios. Several gases are selected as potential additives, including O2, He, Ar, Kr, butane and cyclohexane. Compared with the Brayton cycle with pure S–CO2 (supercritical carbon dioxide) as the working fluid, it is found that both CO2–He and CO2–Kr mixtures can improve the thermodynamic performances of the SBC by increasing the cycle efficiency and decreasing the amounts of heat transfer in the HTR and LTR. For the cycles with the pure S–CO2 mixture, CO2–butane mixture and CO2–cyclohexane mixture as the working fluids, the cycle efficiencies decrease with increasing main compressor inlet temperature. However, when the main compressor inlet temperature is above the critical temperature of pure CO2, the cycle efficiencies of the cycles with CO2–butane mixture and CO2–cyclohexane mixture are higher than that of the cycle with pure CO2 as the working fluid. For the cycles with CO2-based binary mixtures and pure S–CO2 as the working fluids, the higher reactor outlet temperature always results into higher cycle efficiencies and larger amount of heat transfer in the HTR and smaller amount of heat transfer in the LTR.

Keywords: Supercritical gas Brayton cycle; CO2-based binary mixtures; Nuclear reactor; Cycle efficiency (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (37)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215007859
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:89:y:2015:i:c:p:874-886

DOI: 10.1016/j.energy.2015.06.029

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:89:y:2015:i:c:p:874-886