Investigation of long term reactive stability of ceria for use in solar thermochemical cycles
Nathan R. Rhodes,
Michael M. Bobek,
Kyle M. Allen and
David W. Hahn
Energy, 2015, vol. 89, issue C, 924-931
Abstract:
The use of an intermediate reactive material composed of cerium (IV) oxide (ceria) is explored for solar fuel production through a CO2-splitting thermochemical redox cycle. To this end, powder and porous ceria samples are tested with TGA (thermogravimetric analysis) to ascertain their maximum fuel production potential from the CeO2 → CeO2−δ cycle. A maximum value of the non-stoichiometric reduction factor δ of ceria powder was 0.0383 at 1450 °C. The reactive stability of a synthesized porous ceria sample is then observed with carbon dioxide splitting at 1100 °C and thermal reduction at 1450 °C. Approximately 86.4% of initial fuel production is retained after 2000 cycles, and the mean value of δ is found to be 0.0197. SEM (scanning electron microscopy) imaging suggests that the porous ceria structure is retained over 2000 cycles despite apparent loss of some surface area. EDS (energy dispersive x-ray spectroscopy) line scans show that oxidation of porous ceria becomes increasingly homogenous throughout the bulk material over an increasing number of cycles. Significant retention of reactivity and porous structure demonstrates the potential of porous ceria for use in a commercial thermochemical reactor.
Keywords: Thermochemical cycle; Ceria; CO2 splitting; Solar fuels; Reactive stability (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215007975
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:89:y:2015:i:c:p:924-931
DOI: 10.1016/j.energy.2015.06.041
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().