Biodiesel synthesis over millimetric γ-Al2O3/KI catalyst
Aminul Islam,
Yun Hin Taufiq-Yap,
Pogaku Ravindra,
Siow Hwa Teo,
S. Sivasangar and
Eng-Seng Chan
Energy, 2015, vol. 89, issue C, 965-973
Abstract:
The use of spherical millimetric gamma-alumina (γ-Al2O3) as a catalyst support for the production of biodiesel from palm oil was demonstrated. The catalyst support was produced using dripping method, and KI catalyst was loaded on the support using impregnation method. The highest FAME (fatty acid methyl ester) yield of 98% was obtained when the reaction was carried out under the conditions of catalyst to oil ratio of 0.6 g (4wt.%, gcat./goil) using 0.24gKI/gγ-Al2O3 of catalyst loading, reaction time of 4 h, temperature of 60 °C and methanol to palm oil molar ratio of 14:1. XRD (X-ray diffraction) analysis showed the formation of K2O and KAlO2 phases on the KI/γ-Al2O3 catalyst which were possibly the active sites for the transesterification reaction. The highest number and strength of basic sites generated from the solid phase reaction of the KI/γ-Al2O3 catalyst loaded with 0.24 g kF/g γ-Al2O3 were confirmed by temperature programmed desorption of CO2 (CO2-TPD) analysis. The nitrogen adsorption–desorption isotherms was revealed a mesoporous structure of the catalysts. The leaching of potassium species in reused catalysts was observed, as verified by XRF (X-ray fluorescence). KI/γ-Al2O3 had a long life time and maintained sustained activity even after being repeatedly used for 11 cycles. The biodiesel yield was comparable to that produced from smaller catalysts. Thus, the catalyst could be potential for industrial use, as they can be handled safely, easily separated from the process fluid and used in fixed bed reactor to minimize pressure drop.
Keywords: Sol–gel; γ-alumina; Calcination; Transesterification; Biodiesel (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215007926
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:89:y:2015:i:c:p:965-973
DOI: 10.1016/j.energy.2015.06.036
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().