Potential of organic Rankine cycle technology in India: Working fluid selection and feasibility study
Jahar Sarkar and
Souvik Bhattacharyya
Energy, 2015, vol. 90, issue P2, 1618-1625
Abstract:
India has great potential to employ the ORC (organic Rankine cycle) technology for conversion of low temperature waste heat and renewable energy. In this study, available waste heat and relevant renewable heat sources in India are reviewed and suitable working fluids for ORC have been selected based on operational, environmental and safety criteria. A feasibility study and comparison of selected fluids for ORC is also presented for Indian climates along with discussions on component, operation and cost related aspects. A comprehensive review on available heat sources and sinks shows that India has plenty of waste heat and renewable energy sources for electricity generation by means of ORC; however, condenser operation may be challenging due to wide ambient temperature variation. Appropriate performance comparison among selected working fluids shows that ammonia is the best fluid in terms of net power generation and compactness of turbo-machineries, whereas n-Pentane is the best fluid in terms of thermal efficiency and heat exchanger compactness. Both are recommended as working fluids for ORC installations in India. The study reveals that there is a great opportunity to employ this technology in India provided we have to overcome some challenges related to component selection, finance and maintenance.
Keywords: Organic Rankine cycle; Heat sources; Fluid selection; Performance; Component compactness; Plant economics (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215008919
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:90:y:2015:i:p2:p:1618-1625
DOI: 10.1016/j.energy.2015.07.001
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().