Computational study on novel circulating aerofoils for use in Magnus wind turbine blades
Ahmad Sedaghat,
Iman Samani,
Mojtaba Ahmadi-Baloutaki,
M. El Haj Assad and
Mohamed Gaith
Energy, 2015, vol. 91, issue C, 393-403
Abstract:
In most efficient aerofoil sections used in wind turbine blades, the maximum lift to drag ratio hardly reaches 200. Our research obtained higher lift by employing the Magnus effect obtained by circulating symmetrical geometries. First the research study reviews the literature of Magnus effect for circulating cylinders, presents recent progress on BEM (blade element momentum) modelling, and highlights the importance of lift to drag ratio in both Magnus and conventional aerofoil type wind turbine blades. Magnus effect can be produced by a circulating surface of symmetrical aerofoils. However, neither experimental nor computational studies are found in literature for circulating aerofoils. Subsequently, this text presents, a high-resolution computational solver, based on finite-volume TVD (total variation diminishing) scheme, to solve fluid flows around symmetrical NACA0015 aerofoil, where the results are validated against a widely used experimental data. Finally, the circulating NACA0015 aerofoil with various surface treadmill speeds is investigated at different incident angles. The computational results reveal that the lift increases while drag decreases in all cases. The significant lift to drag ratio of 278 is obtained at dimensionless treadmill speed of 2 at incident angle of 10°. The flow features around this circulating aerofoil, along with the need for additional experimental research, is described.
Keywords: Wind power; Magnus effect; Horizontal axis wind turbine; CFD; Treadmill motion; Circulating aerofoil (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215011342
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:91:y:2015:i:c:p:393-403
DOI: 10.1016/j.energy.2015.08.058
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().