Multi-model solar irradiance prediction based on automatic cloud classification
Hsu-Yung Cheng and
Chih-Chang Yu
Energy, 2015, vol. 91, issue C, 579-587
Abstract:
This paper proposes a framework to automatically conduct cloud classification on all-sky images and perform short-term solar irradiance prediction according to the classification results. The all-sky images are divided into blocks to deal with the mixed cloud type conditions. Local texture patterns and statistical texture features are extracted from the image blocks for cloud classification. Different cloud types with various heights, thickness, and opacity have different impact on the variation of solar irradiance. Therefore, several regression models are trained to capture the characteristics of irradiance changes under different cloud types. The current classified cloud type is used to select a corresponding prediction model. Such design substantially increases the prediction accuracy. The experimental results verify the effectiveness of the proposed framework. Both the proposed cloud classification method and irradiance prediction mechanism outperform existing works. Adding local texture patterns in the feature vector enhance the classification performance. Compared with non-block based methods, the proposed block-based method could increase the classification rate by 5%–10%. Utilizing multiple prediction models according cloud types could lower both the mean absolute error and the root mean squared error on short-term irradiance prediction.
Keywords: Cloud classification; Prediction; Solar irradiance (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215011512
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:91:y:2015:i:c:p:579-587
DOI: 10.1016/j.energy.2015.08.075
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().