Study of metal-organic framework MIL-101(Cr) for natural gas (methane) storage and compare with other MOFs (metal-organic frameworks)
Sibnath Kayal,
Baichuan Sun and
Anutosh Chakraborty
Energy, 2015, vol. 91, issue C, 772-781
Abstract:
Natural gas, containing mainly methane (CH4), has the potential to substitute petroleum as fuel for vehicles. However, the storage of natural gas at adequately high densities to fulfil the requirement of driving range is a challenging task. One prospective solution is the use of porous materials to adsorb natural gas at lower pressures and temperatures resulting in higher density storage. In this article, we present an extensive study on synthesis, characterization and property evaluation of MIL-101(Cr) MOF (metal-organic framework) for CH4 adsorption. At 298 K, it is observed that the total volumetric uptake of CH4 on MIL-101(Cr) MOF is about (i) 150 cm3/cm3 at 35 bar, (ii) 215 cm3/cm3 at 65 bar, and (iii) 30 cm3/cm3 at 5 bar. Further, we have demonstrated a novel idea to store CH4 on MOFs in an ANG (adsorbed natural gas) vessel below critical point temperature employing LNG (liquefied natural gas) regasification. This LNG–ANG coupling improves the competitiveness of ANG storage and increases the CH4 working capacity. Employing LNG-ANG coupling, it is found that MIL-101(Cr) exhibits high CH4 delivery or working capacity which is (i) 240 cm3/cm3 for the operating parameters ranging from 6 bar at 160 K to 5 bar at 298 K, and (ii) 125 cm3/cm3 for the operating parameters varying from 1.2 bar at 160 K to 5 bar at 298 K.
Keywords: Adsorption; Adsorption isotherms; GCMC (grand canonical Monte Carlo); MOFs (metal-organic frameworks); Methane storage (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215011731
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:91:y:2015:i:c:p:772-781
DOI: 10.1016/j.energy.2015.08.096
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().