EconPapers    
Economics at your fingertips  
 

Exergetic analysis of a solar thermoelectric generator

B.Y. Ohara and Hyungsuk Lee

Energy, 2015, vol. 91, issue C, 84-90

Abstract: Recently, thermoelectric modules have been considered as possible replacement to solar photovoltaic system due to its potential for combined heat and power. In the designs of solar thermoelectric cogeneration systems, a careful compromise has to be made between thermal energy and electrical power. For practical purposes, electrical power is preferred over heat energy. However, due to the current low conversion efficiencies of thermoelectric materials, increasing electrical power generation causes the overall combined efficiency to suffer. This study proposes an exergetic analysis of combined heat and power solar thermoelectric systems to maximize exergetic efficiency. The modeling is based on the previously investigated design of a solar thermoelectric generator for residential combined heat and power generation. The working conditions (cold side reservoir temperature and solar concentration) are varied to maximize exergetic efficiency without sacrificing too much electricity generation. The module geometry for thermal load matching is also suggested.

Keywords: Combined heat and power (CHP); Heat transfer analysis; System optimization; Exergy (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215011044
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:91:y:2015:i:c:p:84-90

DOI: 10.1016/j.energy.2015.08.030

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:91:y:2015:i:c:p:84-90