EconPapers    
Economics at your fingertips  
 

Novel activity classification and occupancy estimation methods for intelligent HVAC (heating, ventilation and air conditioning) systems

Rajib Rana, Brano Kusy, Josh Wall and Wen Hu

Energy, 2015, vol. 93, issue P1, 245-255

Abstract: Reductions in HVAC (heating, ventilation and air conditioning) energy consumption can be achieved by limiting heating in the winter or cooling in the summer. However, the resulting low thermal comfort of building occupants may lead to an override of the HVAC control, which revokes its original purpose. This has led to an increased interest in modeling and real-time tracking of location, activity, and thermal comfort of building occupants for HVAC energy management. While thermal comfort is well understood, it is difficult to measure in real-time environments where user context changes dynamically. Encouragingly, plethora of sensors available on smartphone unleashes the opportunity to measure user contexts in real-time. An important contextual information for measuring thermal comfort is Metabolism rate, which changes based on current physical activities. To measure physical activity, we develop an activity classifier, which achieves 10% higher accuracy compared to Support Vector Machine and k-Nearest Neighbor. Office occupancy is another contextual information for energy-efficient HVAC control. Most of the phone based occupancy estimation techniques will fail to determine occupancy when phones are left at desk while sitting or attending meetings. We propose a novel sensor fusion method to detect if a user is near the phone, which achieves more than 90% accuracy. Determining activity and occupancy our proposed algorithms can help maintaining thermal comfort while reducing HVAC energy consumptions.

Keywords: HVAC (heating, ventilation and air conditioning); Sparse random classifier; Sensor fusion; Smartphone; Occupancy; Physical activity (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215011883
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:93:y:2015:i:p1:p:245-255

DOI: 10.1016/j.energy.2015.09.002

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:93:y:2015:i:p1:p:245-255