Temperature fields induced by geothermal devices
V. Ciriello,
M. Bottarelli,
V. Di Federico and
D.M. Tartakovsky
Energy, 2015, vol. 93, issue P2, 1896-1903
Abstract:
Efficient and sustainable exploitation of low-enthalpy geothermal energy relies on accurate representations of heat transfer processes in the subsurface. An analytical model, which provides such a representation by predicting the dynamics of thermal fields induced by shallow GHEs (ground heat exchangers), is derived. The model accounts for atmospheric temperature fluctuations at the ground surface, an arbitrary geometry of GHEs operating in time-varying heating/cooling modes, and anisotropy and uncertain spatio-temporal variability of thermal conductivity of the ambient soil. To validate the model, its predictions of a thermal field generated by a shallow flat-panel GHEs are compared with experimental data. This comparison demonstrates the model's ability to provide accurate fit-free predictions of soil-temperature fields generated by GHEs. The analysis presented shows that a single horizontal GHE may affect soil temperature by several degrees at distances on the order of 1 m. The volume of influence is expressed in terms of soil thermal properties. Such modeling predictions are invaluable for screening of potential sites and optimal design of geothermal systems consisting of multiple GHEs.
Keywords: Temperature; Subsurface; Modeling; Heat exchangers (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215014206
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:93:y:2015:i:p2:p:1896-1903
DOI: 10.1016/j.energy.2015.10.052
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().