A meta-heuristic method to design off-grid community electrification projects with renewable energies
Matteo Ranaboldo,
Alberto García-Villoria,
Laia Ferrer-Martí and
Rafael Pastor Moreno
Energy, 2015, vol. 93, issue P2, 2467-2482
Abstract:
The design of off-grid electrification projects considering hybrid systems and distribution microgrids is a complex task that requires the use of decision support tools. Most of existing tools focus on the design of hybrid systems without defining generator locations and microgrids configuration. Recently a deterministic heuristic was developed to solve the problem. In this study we present an enhanced deterministic heuristic and then a meta-heuristic procedure for designing community off-grid electrification projects based on renewable energies considering micro-scale resource variations and a combination of independent generation points and microgrids. Both new algorithms improve performance of the previous existing procedure. The new deterministic heuristic can rapidly (in a computational time lower than 1 min) obtain a good solution. On the other hand, the proposed meta-heuristic method considerably enhances solutions obtained by the deterministic heuristic with a computational time of 1 h on a standard PC. The improvement tends to raise as the complexity of the analyzed instance increases. The proposed algorithm is a complete design tool that can efficiently support the design of stand-alone community electrification projects requiring of low computational resources.
Keywords: Off-grid generation; Renewable energy; Hybrid systems; Microgrids; Meta-heuristic; Optimization (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215014899
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:93:y:2015:i:p2:p:2467-2482
DOI: 10.1016/j.energy.2015.10.111
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().