EconPapers    
Economics at your fingertips  
 

Experimental investigation on the CO2 transcritical power cycle

Lisheng Pan, Bo Li, Xiaolin Wei and Teng Li

Energy, 2016, vol. 95, issue C, 247-254

Abstract: CO2 has perfect environmental properties and has great potential to become a very ideal working fluid for power cycle. In the laboratory, a CO2 transcritical power cycle system was established, using a rolling piston expander. Experimental study was carried out on the operating parameters, the electric power generated and the thermal efficiency. The pump operating speed and the load resistance were used to regulate the operating parameters. The results showed that there was a sudden decrease for the electric power generated in the start-up process. The electric power rose with increasing the converter frequency. When the converter frequency kept constant, the electric current declined with increasing the load resistance. In the experimental study, the steady electric power generated could reach about 1100 W and the thermal efficiency 5.0% when the high pressure was about 11 MPa and the low pressure was about 4.6 MPa. Though the isentropic efficiency, about 21.4%, was unsatisfactory, it still has important significance for the study on CO2 expander.

Keywords: CO2 transcritical power cycle; Rolling piston expander; System performance; Experimental study (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215016370
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:95:y:2016:i:c:p:247-254

DOI: 10.1016/j.energy.2015.11.074

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:95:y:2016:i:c:p:247-254