EconPapers    
Economics at your fingertips  
 

Extension of apparent devolatilization kinetics from thermally thin to thermally thick particles in zero dimensions for woody biomass

Joakim M. Johansen, Peter A. Jensen, Peter Glarborg, Marco Mancini, Roman Weber and Reginald E. Mitchell

Energy, 2016, vol. 95, issue C, 279-290

Abstract: This work aims to provide an accurate and simple model, predicting the time dependent devolatilization of woody biomass at conditions (Tgas < 2000 K) and particle sizes (<2 mm) relevant to suspension fired boilers. The zero dimensional model is developed from reference calculations with a one-dimensional heat transport model coupled with a drying and a devolatilization model. The model output has been used to generate pyrolysis kinetics corrected for non-isothermal effects, i.e. intraparticle heat transport limitations. Analysis of the modeling results indicate that heat transport corrections of even small particles are necessary. The current work divides a given particle size distribution into suitable size categories based on their internal heat transport properties. The devolatilization is described by size category specific rate constants based on a single first order reaction mechanism. This approach allows for significantly more accurate devolatilization predictions of any particle size distribution to be described by simple kinetic mechanisms and isothermal particle heat balances. Such an approach is easily implemented into most commercial CFD (computational fluid dynamics) codes without adding any additional strain to the computational requirements.

Keywords: Devolatilization kinetics; Pyrolysis; Biomass; Computational fluid dynamics (CFD); Non-isothermal; High heating rate (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215015601
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:95:y:2016:i:c:p:279-290

DOI: 10.1016/j.energy.2015.11.025

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:95:y:2016:i:c:p:279-290