EconPapers    
Economics at your fingertips  
 

An advanced real-time capable mixture controlled combustion model

Tomaž Katrašnik

Energy, 2016, vol. 95, issue C, 393-403

Abstract: The paper presents an innovative and advanced MCC (mixture controlled combustion). The MCC model is coupled to the innovative mechanistically based 0D spray model presented in a companion paper [1] that provides inputs on fuel mass distribution. Advanced MCC model is embedded into a 2-zone combustion modeling framework. Advanced MCC predicts ROHR (Rate-Of-Heat-Release) as the combination of the premixed and two diffusion parts, which correspond to rich and lean spray region. It also calculates the amount of fuel available for premixed combustion based on the duration of the ignition delay period. In addition, it reduces the reaction rate based on the oxygen availability using mechanistic basis, based on evaporation rate and based on mechanistically determined fuel amount that has reached the walls. High level of model predictability was confirmed by good agreement between the simulated and the measured ROHR traces over very broad operating range of the engine by using fixed parameters of the advanced MCC model and the spray model. Moreover, the applied modeling framework with embedded innovative spray and advanced MCC model features HiL (Hardware-in-the-Loop) compatible computational times.

Keywords: Diesel engine; Combustion model; Mixture controlled combustion; Zero-dimensional; Real-time compliant (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215016291
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:95:y:2016:i:c:p:393-403

DOI: 10.1016/j.energy.2015.11.066

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:95:y:2016:i:c:p:393-403