Enhanced power generation of partial shaded photovoltaic fields by forecasting the interconnection of modules
Smita Pareek and
Ratna Dahiya
Energy, 2016, vol. 95, issue C, 561-572
Abstract:
SPV (solar photovoltaic) systems are often partially shadowed by passing cloud, neighboring building, chimney, tree, telephone pole etc. As a result, their produced power is lower than the expected value despite their size. This reduction in produced power is dependent on area of PVs under shade, shade scenario, module interconnection styles and also on the connection of shaded and non-shaded modules. This paper presents a novel method to forecast the interconnection of modules in a TCT (total-cross-tied) connected PV (photovoltaic) array. In this approach, the placement of shaded and non-shaded modules in array are done in such a way so as to distribute the shading effects evenly in each row thereby enhance the PV array power. The performance of this method is investigated for different shading patterns which are the approximations for the most common partial shading scenarios in PV fields and the results show that it can provide multiple solutions for reconfiguration of photovoltaic array to improve energy yield under partial shading conditions. In addition, the power–voltage characteristic curve of these reconfigurable PV arrays are much smoother than that of TCT (total-cross-tied) configured PV arrays and thus ease the work of MPP (maximum power point) techniques. Also this method can easily be implemented for the design of large photovoltaic structures without tedious mathematical formulation.
Keywords: Array; Partial shading; Photovoltaic; Reconfiguration; Series-parallel; Total-cross-tied (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215016783
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:95:y:2016:i:c:p:561-572
DOI: 10.1016/j.energy.2015.12.036
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().