Effect of CO2 dilution on combustion and emissions characteristics of the hydrogen-enriched gasoline engine
Shuofeng Wang,
Changwei Ji,
Bo Zhang,
Xiaoyu Cong and
Xiaolong Liu
Energy, 2016, vol. 96, issue C, 118-126
Abstract:
CO2 (Carbon dioxide) dilution is a feasible way for controlling NOx (Nitrogen oxides) emissions and loads of the internal combustion engines. This paper investigated the effect of CO2 dilution on the combustion and emissions characteristics of a hydrogen-enriched gasoline engine. The experiment was conducted on a 1.6 L spark-ignition engine with electronically controlled hydrogen and gasoline injection systems. At two hydrogen volume fractions of 0 and 3%, the CO2 volume fraction in the intake was gradually increased from 0 to 4%. The fuel-air mixtures were kept at the stoichiometric. The experimental results demonstrated that brake mean effective pressure of the gasoline engine was quickly reduced after adopting CO2 dilution. Comparatively, Bmep (Brake mean effective pressure) of the 3% hydrogen-enriched engine was gently decreased with the increase of CO2 dilution level. Thermal efficiency of the 3% hydrogen-enriched gasoline engine was raised under properly increased CO2 dilution levels. However, thermal efficiency of the pure gasoline engine was generally dropped after the CO2 dilution. The addition of hydrogen could shorten flame development and propagation durations under CO2 diluent conditions for the gasoline engine. Increasing CO2 fraction in the intake caused the dropped NOx and raised HC (Hydrocarbon) emissions. Increasing hydrogen fraction in the intake could effectively reduce HC emissions under CO2 diluent conditions.
Keywords: Hydrogen; Gasoline; Combustion; CO2 dilution; Emissions; Spark-ignition engines (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421501659X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:96:y:2016:i:c:p:118-126
DOI: 10.1016/j.energy.2015.12.017
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().