EconPapers    
Economics at your fingertips  
 

High fidelity model of the oxygen flux across ion transport membrane reactor: Mechanism characterization using experimental data

Davide Maria Turi, Paolo Chiesa, Ennio Macchi and Ahmed F. Ghoniem

Energy, 2016, vol. 96, issue C, 127-141

Abstract: As a consequence of growing energy demand and expanded use of fossil fuels, CO2 level in the atmosphere has risen in the last couple of centuries. The principal effect of these anthropologic emissions of greenhouse gases is global warming. In the last years, there has been much effort on finding a long term solution to this problem, mostly based on clean power technologies. In order to reduce green-house gas emissions different technologies to capture CO2 are under investigation. One of the most promising technologies is oxy-combustion using ITM (ion transport membranes) used in air separation units or integrated directly in reactors. This work presents a model for the integration of dense oxygen membrane modules in air separation units. An axially resolved model for the distribution of oxygen concentration is developed, incorporating a model of the oxygen flux across membrane surface and its dependency on the local conditions, which satisfies the conservation equations of mass and energy. The oxygen flux model is based on accurate experimental measurements and incorporates the effects of chemistry at the surface and diffusion in the bulk material, as well as heat and mass transport on the feed and sweep side.

Keywords: Oxy-combustion; CO2 capture; Oxygen membranes; LCF; ACM (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215016989
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:96:y:2016:i:c:p:127-141

DOI: 10.1016/j.energy.2015.12.055

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:96:y:2016:i:c:p:127-141