Exergoeconomic analysis with reliability and availability considerations of a nuclear energy-based combined cycle power plant
V. Zare
Energy, 2016, vol. 96, issue C, 187-196
Abstract:
The reliability and availability considerations are introduced in the exergoeconomic investigation of a combined cycle power plant in which an organic Rankine cycle is employed to recover the waste heat from a GT-MHR (Gas Turbine Modular Helium Reactor) power plant. The SPECO (specific exergy costing) theory is employed to investigate the exergoeconomic performance of the system and assess the specific cost of the output power. For the reliability analysis, however, the SSM (state-space method) along with the probabilistic analysis of Markov processes is employed. After conducting a parametric analysis, the performance of the cycle is optimized with respect to the specific cost of output power, with and without reliability considerations. The effects of the system failure and repair rates are examined on the cost of power and availability of the combined cycle by the sensitivity analysis. The optimization results show that, the specific cost of output power for the combined cycle is around 12% lower than that for the stand alone GT-MHR. However, availability of the combined cycle is lower than that of the GT-MHR as the former has more components and a complicated system.
Keywords: Availability; Exergoeconomics; GT-MHR (Gas Turbine Modular Helium Reactor); Organic Rankine cycle; Reliability (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215017053
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:96:y:2016:i:c:p:187-196
DOI: 10.1016/j.energy.2015.12.060
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().