Energy concentration limits in solar thermal heating applications
Qiyuan Li,
Ali Shirazi,
Cheng Zheng,
Gary Rosengarten,
Jason A. Scott and
Robert A. Taylor
Energy, 2016, vol. 96, issue C, 253-267
Abstract:
Global demand for heating accounts for more than 50% of primary energy consumption. Thermal energy for such purposes is produced mainly by natural gas, electricity, biomass, geothermal, and solar thermal technologies. Solar energy is an abundant, but low density, resource which can be harvested with little environmental impacts. In order to achieve outputs suitable for commercial and industrial applications, optical concentrators are conventionally required to increase the temperature and efficiency of a solar thermal system's output. In this paper, we instead explore the potential for utilizing energy concentrators to boost the performance of solar thermal collectors. To determine the feasibility of this approach, engineering limitations are established for realistic energy concentrators. Our analysis reveals that maximum effective energy concentration ratios of 176 and 2208 are possible for passive and active energy concentrators, respectively. Overall, this study demonstrates the potential of this concept for solar thermal collectors and other low-grade sources of heat.
Keywords: Solar energy; Energy concentration; Heat flux; Heat pumps; Energy efficiency (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215017004
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:96:y:2016:i:c:p:253-267
DOI: 10.1016/j.energy.2015.12.057
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().