Time-valued net energy analysis of solar kilns for wood drying: A solar thermal application
Mahmudul Hasan and
Timothy Alan Granville Langrish
Energy, 2016, vol. 96, issue C, 415-426
Abstract:
This paper describes a LNEA (life-cycle net energy analysis) for solar thermal applications with particular reference to two typical greenhouse-type solar kilns (Oxford and Boral) for wood drying. The analysis included the simulation of future flows of OE (operational energy), and the assessment of EE (embodied energy) for the two kilns over an expected service life of 20 years. The OE streams associated with the drying of a hardwood species (Eucalyptus pilularis) were estimated by solving a solar kiln model, while a LCA (life cycle assessment) model was used for the assessment of EE components. The key objective of this paper was to carry out a time-valued net energy analysis for two significantly different kiln designs. This approach of evaluating the energy-intensive facilities (e.g. solar kilns) is novel, and may result in a robust framework for further performance/design optimization study of solar kiln designs. Based on the chosen life-cycle performance parameters, the Oxford kiln was generally found to be more productive and energy efficient than the Boral kiln for hardwood drying in Australia.
Keywords: Life-cycle energy; Net energy analysis; Decision-making; Solar kilns; Timber drying (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215017016
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:96:y:2016:i:c:p:415-426
DOI: 10.1016/j.energy.2015.11.081
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().