EconPapers    
Economics at your fingertips  
 

Single-loop organic Rankine cycles for engine waste heat recovery using both low- and high-temperature heat sources

Young Min Kim, Dong Gil Shin, Chang Gi Kim and Gyu Baek Cho

Energy, 2016, vol. 96, issue C, 482-494

Abstract: A highly efficient single-loop ORC (organic Rankine cycle) is proposed for engine WHR (waste heat recovery) from a gasoline vehicle. IC (Internal combustion) engines have two waste heat sources—exhaust gas and engine coolant—with similar quantities of energy but different temperatures. Dual-loop systems can obtain the maximum power output from engine WHR; however, the systems occupy large amounts of space and are complex, heavy, and economically unfavorable, particularly for vehicle applications. A highly efficient single-loop system can overcome such limitations. This paper compares the performances of conventional single-loop systems and proposes a novel single-loop ORC system for engine WHR from both low- and high-temperature sources. The novel single-loop system produces approximately 20% additional power from engine WHR when operating under the target engine conditions.

Keywords: Organic Rankine cycle (ORC); Engine; Waste heat recovery (WHR); Single-loop ORC; Dual-loop ORC; Thermal efficiency (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215017375
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:96:y:2016:i:c:p:482-494

DOI: 10.1016/j.energy.2015.12.092

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:96:y:2016:i:c:p:482-494