Preparation and characterization of hydrochar from waste eucalyptus bark by hydrothermal carbonization
Pin Gao,
Yiyuan Zhou,
Fang Meng,
Yihui Zhang,
Zhenhong Liu,
Wenqi Zhang and
Gang Xue
Energy, 2016, vol. 97, issue C, 238-245
Abstract:
HTC (hydrothermal carbonization) is a technically-attractive thermal conversion process for biomass to produce solid carbonaceous products at mild conditions. EB (eucalyptus bark) was used as a feedstock for producing hydrochar by HTC. Effect of process conditions on the yield and physicochemical properties of hydrochar was examined by varying carbonization temperature over the range of 220–300 °C and varying residence time over the range of 2–10 h. With increase in temperature, the hydrochar yield decreased slightly from 46.4% at 220 °C to 40.0% at 300 °C. The O/C and H/C atomic ratios reduced from 1.69 and 0.80 to 0.83 and 0.23, respectively, which was mostly related to dehydration, decarboxylation and demethanation reactions. The oxygen containing functional groups decreased with increasing temperature. HHV (higher heating value) of hydrochar was in the range of 20.2–29.2 MJ/kg. Thermogravimetric analysis showed that hydrochar products obtained at temperature over 220 °C exhibited almost the same thermal behaviors. In comparison, the influence of residence time on the yield, physicochemical properties and thermal behavior of hydrochar was marginal.
Keywords: Hydrothermal carbonization; Eucalyptus bark; Hydrochar; Carbonization temperature; Residence time (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (27)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215017685
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:97:y:2016:i:c:p:238-245
DOI: 10.1016/j.energy.2015.12.123
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().