EconPapers    
Economics at your fingertips  
 

System profitability of excess heat utilisation – A case-based modelling analysis

Akram Fakhri Sandvall, Erik O. Ahlgren and Tomas Ekvall

Energy, 2016, vol. 97, issue C, 424-434

Abstract: The use of EH (excess heat) in DH (district heating) may contribute to increased sustainability through reduced use of primary energy. In Sweden, while biomass has become the most important DH fuel during the last decades, there is a significant amount of industrial EH that could be utilised in the DH systems if it could be shown to be an economically viable alternative. This study addresses the long-term system profitability of a large heat network between a cluster of chemical industries and two DH systems that enables an increased use of EH. An assessment is carried out by scenario and sensitivity analyses and by applying the optimising energy systems model MARKAL_WS, in which the DH systems of the Västra Götaland region of Sweden are represented individually. The results show heat network profitability under most assumptions, and that the profitability increases with biomass competition, phase-out of natural gas use and higher CO2 charges, whereas it decreases with the availability of other EH sources in the base load of the DH systems.

Keywords: District heating; Waste heat utilisation; MARKAL; Energy system modelling; Heat recovery (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215016795
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:97:y:2016:i:c:p:424-434

DOI: 10.1016/j.energy.2015.12.037

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:97:y:2016:i:c:p:424-434