Performance prediction of seawater shower cooling towers
Xiaoni Qi,
Yongqi Liu,
Qianjian Guo,
Jie Yu and
Shanshan Yu
Energy, 2016, vol. 97, issue C, 435-443
Abstract:
The salt content in seawater results in many considerable engineering problems, including salt deposition, corrosion, and fill blockage. Seawater cooling towers are a promising potential remedy, but the lack of progress in cooling tower design technology calls for a more systematic investigation into this topic. In this study, a shower cooling tower without packing was used in seawater circulating cooling system, and a complete mathematical model of the shower cooling tower's performance was developed. The model describes the experimental data with an accuracy of about 5%. This study also conducted a comparative prediction of the outlet water temperature between freshwater and seawater in a shower cooling tower; results showed that cooling performance decreases as inlet water temperature increases. The results also show that cooling performance degrades as droplet diameter and salt concentration increase. When the air-to-water ratio increases, cooling efficiency improves, and when seawater concentration is reduced, air moisture increases at a higher rate. These results altogether provide a valuable theoretical basis for improving seawater cycling and cooling technologies in the future.
Keywords: Shower cooling tower; Seawater cooling; Heat and mass transfer (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544215017703
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:97:y:2016:i:c:p:435-443
DOI: 10.1016/j.energy.2015.12.125
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().