Numerical study of oxy-fuel MILD (moderate or intense low-oxygen dilution combustion) combustion for CH4–H2 fuel
Abbas Mardani and
A. Fazlollahi Ghomshi
Energy, 2016, vol. 99, issue C, 136-151
Abstract:
This paper demonstrates a numerical study on the combination of Oxy-Fuel and MILD (moderate or intense low-oxygen dilution combustion) combustions, i.e. OXY-MILD. The N2 of a hot oxidizer was replaced with CO2 and H2O in a MILD combustion test case. The study was conducted using a CFD analysis, a zero-dimensional well-stirred reactor analysis, and a reactors network analysis. In the CFD analysis, RANS equations with modified k−ε equations were solved for a 2D-axisymmetric computational domain. Results showed a decrease in temperature gradient, reaction rate, and Damköhler number under the OXY-MILD condition in comparison with the MILD one. It seems the higher the oxygen level in the preheated oxidizer, the more effective the removal of N2 from the hot oxidizer was on the uniformity and extending of the reaction zone. Under OXY-MILD condition, an increment of inlet oxygen level decreased concentrations of CO, NO, CH2O, and HCO and increased temperature in the reaction zone. Furthermore, the effect of fuel hydrogen content on the reaction zone was investigated. A reduction of fuel hydrogen content led to an increase in both the uniformity of temperature field and the area of the reaction zone, and a decrease in formations of NO and CO for the OXY-MILD combustion.
Keywords: MILD combustion; Oxy-fuel combustion; Methane; Dilution; Preheat (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544216000268
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:99:y:2016:i:c:p:136-151
DOI: 10.1016/j.energy.2016.01.016
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().