Regular potential games
Brian Swenson,
Ryan Murray and
Soummya Kar
Games and Economic Behavior, 2020, vol. 124, issue C, 432-453
Abstract:
A fundamental problem with the Nash equilibrium concept is the existence of certain “structurally deficient” equilibria that (i) lack fundamental robustness properties, and (ii) are difficult to analyze. The notion of a “regular” Nash equilibrium was introduced by Harsanyi. Such equilibria are isolated, highly robust, and relatively simple to analyze. A game is said to be regular if all equilibria in the game are regular. In this paper it is shown that almost all potential games are regular. That is, except for a closed subset with Lebesgue measure zero, all potential games are regular. As an immediate consequence of this, the paper also proves an oddness result for potential games: In almost all potential games, the number of Nash equilibrium strategies is finite and odd. Specialized results are given for weighted potential games, exact potential games, and games with identical payoffs. Applications of the results to game-theoretic learning are discussed.
Keywords: Game theory; Potential games; Generic games; Regular equilibria; Multi-agent systems (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0899825620301354
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:gamebe:v:124:y:2020:i:c:p:432-453
DOI: 10.1016/j.geb.2020.09.005
Access Statistics for this article
Games and Economic Behavior is currently edited by E. Kalai
More articles in Games and Economic Behavior from Elsevier
Bibliographic data for series maintained by Catherine Liu ().