New complexity results about Nash equilibria
Vincent Conitzer and
Tuomas Sandholm
Games and Economic Behavior, 2008, vol. 63, issue 2, 621-641
Abstract:
We provide a single reduction that demonstrates that in normal-form games: (1) it is -complete to determine whether Nash equilibria with certain natural properties exist (these results are similar to those obtained by Gilboa and Zemel [Gilboa, I., Zemel, E., 1989. Nash and correlated equilibria: Some complexity considerations. Games Econ. Behav. 1, 80-93]), (2) more significantly, the problems of maximizing certain properties of a Nash equilibrium are inapproximable (unless ), and (3) it is -hard to count the Nash equilibria. We also show that determining whether a pure-strategy Bayes-Nash equilibrium exists in a Bayesian game is -complete, and that determining whether a pure-strategy Nash equilibrium exists in a Markov (stochastic) game is -hard even if the game is unobserved (and that this remains -hard if the game has finite length). All of our hardness results hold even if there are only two players and the game is symmetric.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (24)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0899-8256(08)00093-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:gamebe:v:63:y:2008:i:2:p:621-641
Access Statistics for this article
Games and Economic Behavior is currently edited by E. Kalai
More articles in Games and Economic Behavior from Elsevier
Bibliographic data for series maintained by Catherine Liu ().