Approachability in repeated games: Computational aspects and a Stackelberg variant
Shie Mannor and
John N. Tsitsiklis
Games and Economic Behavior, 2009, vol. 66, issue 1, 315-325
Abstract:
We consider a finite two-player zero-sum game with vector-valued rewards. We study the question of whether a given polyhedral set D is "approachable," that is, whether Player 1 (the "decision maker") can guarantee that the long-term average reward belongs to D, for any strategy of Player 2 (the "adversary"). We examine Blackwell's necessary and sufficient conditions for approachability, and show that the problem of checking these conditions is NP-hard, even in the special case where D is a singleton. We then consider a Stackelberg variant whereby, at each stage, the adversary gets to act after observing the decision maker's action. We provide necessary and sufficient conditions for approachability, and again establish that checking these conditions is NP-hard, even when D is a singleton. On the other hand, if the dimension of the reward vector is fixed, an approximate version of these conditions can be checked in polynomial time.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0899-8256(08)00080-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:gamebe:v:66:y:2009:i:1:p:315-325
Access Statistics for this article
Games and Economic Behavior is currently edited by E. Kalai
More articles in Games and Economic Behavior from Elsevier
Bibliographic data for series maintained by Catherine Liu ().