EconPapers    
Economics at your fingertips  
 

Fictitious play in an evolutionary environment

Michal Ramsza and Robert M. Seymour

Games and Economic Behavior, 2010, vol. 68, issue 1, 303-324

Abstract: We consider continuous time versions of the fictitious play updating algorithm in an evolutionary environment. We derive two forms of continuous-time limit, both defining approximations to this algorithm. The first has the form of a first-order partial differential equation, which we solve explicitly. The dynamic for a distribution of strategies is also derived, which we show can be written in a form similar to a positive definite dynamic. The asymptotic solution (in the ultra long run) is discussed for 2-player, 2-strategy co-ordination and anti-coordination games, and we show convergence to Nash equilibrium in both cases. The second, and better, approximation is in the form of a diffusion equation. This is considerably more difficult to analyze. However, we derive a formal solution and show that it leads to the same asymptotic limit for the distribution of strategies as the 1st-order approximation for 2-player, 2-strategy anti-coordination games.

Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0899-8256(09)00109-2
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:gamebe:v:68:y:2010:i:1:p:303-324

Access Statistics for this article

Games and Economic Behavior is currently edited by E. Kalai

More articles in Games and Economic Behavior from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:gamebe:v:68:y:2010:i:1:p:303-324