An algorithm for proper rationalizability
Andrés Perea
Games and Economic Behavior, 2011, vol. 72, issue 2, 510-525
Abstract:
Proper rationalizability ([Schuhmacher, 1999] and [Asheim, 2001]) is a concept in epistemic game theory based on the following two conditions: (a) a player should be cautious, that is, should not exclude any opponent's strategy from consideration; and (b) a player should respect the opponents' preferences, that is, should deem an opponent's strategy si infinitely more likely than if he believes the opponent to prefer si to . A strategy is properly rationalizable if it can optimally be chosen under common belief in the events (a) and (b). In this paper we present an algorithm that for every finite game computes the set of all properly rationalizable strategies. The algorithm is based on the new idea of a preference restriction, which is a pair (si,Ai) consisting of a strategy si, and a subset of strategies Ai, for player i. The interpretation is that player i prefers some strategy in Ai to si. The algorithm proceeds by successively adding preference restrictions to the game.
Keywords: Epistemic; game; theory; Proper; rationalizability; Algorithms (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0899825610001715
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:gamebe:v:72:y:2011:i:2:p:510-525
Access Statistics for this article
Games and Economic Behavior is currently edited by E. Kalai
More articles in Games and Economic Behavior from Elsevier
Bibliographic data for series maintained by Catherine Liu ().