Estimating demand elasticities using nonlinear pricing
Christina Dalton
International Journal of Industrial Organization, 2014, vol. 37, issue C, 178-191
Abstract:
Nonlinear pricing is prevalent in industries such as health care, public utilities, and telecommunications. However, this pricing scheme introduces bias into estimating elasticities for welfare analysis or policy changes. I develop a local elasticity estimation method that uses nonlinear price schedules to isolate consumers' expenditure choices from selection and simultaneity biases. This method improves over previous approaches by using commonly-available observational data and requiring only a single general monotonicity assumption. Using claims-level data on health insurance with two nonlinearities, I am able to measure two separate elasticities, and find that elasticity declines from −0.26 to−0.09 by the second nonlinearity. These estimates are then used to calculate moral hazard deadweight loss. This method enables estimation of many policies with nonlinear pricing which previous tools could not address.
Keywords: Elasticity; Nonlinear; Health insurance; Moral hazard (search for similar items in EconPapers)
JEL-codes: C14 D40 I11 (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167718714000873
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:indorg:v:37:y:2014:i:c:p:178-191
DOI: 10.1016/j.ijindorg.2014.08.007
Access Statistics for this article
International Journal of Industrial Organization is currently edited by P. Bajari, B. Caillaud and N. Gandal
More articles in International Journal of Industrial Organization from Elsevier
Bibliographic data for series maintained by Catherine Liu ().