A comparison of the Web of Science and publication-level classification systems of science
Antonio Perianes-Rodriguez and
Javier Ruiz-Castillo
Journal of Informetrics, 2017, vol. 11, issue 1, 32-45
Abstract:
In this paper, we propose a new criterion for choosing between a pair of classification systems of science that assign publications (or journals) to a set of clusters. Consider the standard target (cited-side) normalization procedure in which cluster mean citations are used as normalization factors. We recommend system A over system B whenever the standard normalization procedure based on system A performs better than the standard normalization procedure based on system B. Performance is assessed in terms of two double tests – one graphical, and one numerical – that use both classification systems for evaluation purposes. In addition, a pair of classification systems is compared using a third, independent classification system for evaluation purposes. We illustrate this strategy by comparing a Web of Science journal-level classification system, consisting of 236 journal subject categories, with two publication-level algorithmically constructed classification systems consisting of 1363 and 5119 clusters. There are two main findings. Firstly, the second publication-level system is found to dominate the first. Secondly, the publication-level system at the highest granularity level and the Web of Science journal-level system are found to be non-comparable. Nevertheless, we find reasons to recommend the publication-level option.
Keywords: Classification systems of science; Journal-level versus publication-level systems; Field-normalization (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1751157716302371
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:infome:v:11:y:2017:i:1:p:32-45
DOI: 10.1016/j.joi.2016.10.007
Access Statistics for this article
Journal of Informetrics is currently edited by Leo Egghe
More articles in Journal of Informetrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().