Predicting scientific research trends based on link prediction in keyword networks
Saman Behrouzi,
Zahra Shafaeipour Sarmoor,
Khosrow Hajsadeghi and
Kaveh Kavousi
Journal of Informetrics, 2020, vol. 14, issue 4
Abstract:
The rapid development of scientific fields in this modern era has raised the concern for prospective scholars to find a proper research field to conduct their future studies. Thus, having a vision of future could be helpful to pick the right path for doing research and ensuring that it is worth investing in. In this study, we use article keywords of computer science journals and conferences, assigned by INSPEC controlled indexing, to construct a temporal scientific knowledge network. By observing keyword networks snapshots over time, we can utilize the link prediction methods to foresee the future structures of these networks. We use two different approaches for this link prediction problem. First, we have utilized three topology-based link prediction algorithms, two of which are commonly used in literature. We have also proposed a third algorithm based on nodes (keywords) clustering coefficient, their centrality measures like eigenvector centrality, and nodes community information. Then, we used nodes topological features and the outputs of aforementioned topology-based link prediction algorithms as features to feed five machine learning link prediction algorithms (SVM, Random Forest Classifier, K-Nearest Neighbors, Gaussian Naïve Bayes, and Multinomial Naïve Bayes). All tested predictors have shown considerable performance and their results are discussed in this paper.
Keywords: Keyword networks; Complex networks; Link prediction; Machine learning; Knowledge networks; Dynamic networks (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1751157720300456
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:infome:v:14:y:2020:i:4:s1751157720300456
DOI: 10.1016/j.joi.2020.101079
Access Statistics for this article
Journal of Informetrics is currently edited by Leo Egghe
More articles in Journal of Informetrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().