Return to basics: Clustering of scientific literature using structural information
Jinhyuk Yun,
Sejung Ahn and
June Young Lee
Journal of Informetrics, 2020, vol. 14, issue 4
Abstract:
Scholars frequently employ relatedness measures to estimate the similarity between two different items (e.g., documents, authors, and institutes). Such relatedness measures are commonly based on overlapping references (i.e., bibliographic coupling) or citations (i.e., co-citation) and can then be used with cluster analysis to find boundaries between research fields. Unfortunately, calculating a relatedness measure is challenging, especially for a large number of items, because the computational complexity is greater than linear. We propose an alternative method for identifying research fronts that uses direct citation inspired by relatedness measures. Our novel approach simply replicates a node into two distinct nodes: a citing node and cited node. We then apply typical clustering methods to the modified network. Clusters of citing nodes should emulate those from the bibliographic coupling relatedness network, while clusters of cited nodes should act like those from the co-citation relatedness network. In validation tests, our proposed method demonstrated high levels of similarity with conventional relatedness-based methods. We also found that the clustering results of the proposed method outperformed those of conventional relatedness-based measures regarding similarity with natural language processing-based classification.
Keywords: Clustering; Mapping; Bibliographic coupling; Co-citation; Relatedness; Bipartite network (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1751157720301978
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:infome:v:14:y:2020:i:4:s1751157720301978
DOI: 10.1016/j.joi.2020.101099
Access Statistics for this article
Journal of Informetrics is currently edited by Leo Egghe
More articles in Journal of Informetrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().