The pace of artificial intelligence innovations: Speed, talent, and trial-and-error
Xuli Tang,
Xin Li,
Ying Ding,
Min Song and
Yi Bu
Journal of Informetrics, 2020, vol. 14, issue 4
Abstract:
Innovations in artificial intelligence (AI) are occurring at speeds faster than ever witnessed before. However, few studies have managed to measure or depict this increasing velocity of innovations in the field of AI. In this paper, we combine data on AI from arXiv and Semantic Scholar to explore the pace of AI innovations from three perspectives: AI publications, AI players, and AI updates (trial and error). A research framework and three novel indicators, Average Time Interval (ATI), Innovation Speed (IS) and Update Speed (US), are proposed to measure the pace of innovations in the field of AI. The results show that: (1) in 2019, more than 3 AI preprints were submitted to arXiv per hour, over 148 times faster than in 1994. Furthermore, there was one deep learning–related preprint submitted to arXiv every 0.87 h in 2019, over 1064 times faster than in 1994. (2) For AI players, 5.26 new researchers entered into the field of AI each hour in 2019, more than 175 times faster than in the 1990s. (3) As for AI updates (trial and error), one updated AI preprint was submitted to arXiv every 41 days, with around 33 % of AI preprints having been updated at least twice in 2019. In addition, as reported in 2019, it took, on average, only around 0.2 year for AI preprints to receive their first citations, which is 5 times faster than 2000–2007. This swift pace in AI illustrates the increase in popularity of AI innovation. The systematic and fine-grained analysis of the AI field enabled to portrait the pace of AI innovation and demonstrated that the proposed approach can be adopted to understand other fast-growing fields such as cancer research and nano science.
Keywords: Artificial intelligence; Innovation speed; Average time interval; Update speed; The pace of AI (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1751157720301991
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:infome:v:14:y:2020:i:4:s1751157720301991
DOI: 10.1016/j.joi.2020.101094
Access Statistics for this article
Journal of Informetrics is currently edited by Leo Egghe
More articles in Journal of Informetrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().