The inconsistency of h-index: A mathematical analysis
Ricardo Brito () and
Alonso Rodríguez Navarro
Journal of Informetrics, 2021, vol. 15, issue 1
Abstract:
Citation distributions are lognormal. We use 30 lognormally distributed synthetic series of numbers that simulate real series of citations to investigate the consistency of the h index. Using the lognormal cumulative distribution function, the equation that defines the h index can be formulated; this equation shows that h has a complex dependence on the number of papers (N). We also investigate the correlation between h and the number of papers exceeding various citation thresholds, from 5 to 500 citations. The best correlation is for the 100 threshold but numerous data points deviate from the general trend. The size-independent indicator h/N shows no correlation with the probability of publishing a paper exceeding any of the citation thresholds. In contrast with the h index, the total number of citations shows a high correlation with the number of papers exceeding the thresholds of 10 and 50 citations; the mean number of citations correlates with the probability of publishing a paper that exceeds any level of citations. Thus, in synthetic series, the number of citations and the mean number of citations are much better indicators of research performance than h and h/N. We discuss that in real citation distributions there are other difficulties.
Keywords: h index; Research assessment; Citation; Lognormal distribution (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1751157720306234
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:infome:v:15:y:2021:i:1:s1751157720306234
DOI: 10.1016/j.joi.2020.101106
Access Statistics for this article
Journal of Informetrics is currently edited by Leo Egghe
More articles in Journal of Informetrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().