Using graph embedding and machine learning to identify rebels on twitter
Muhammad Ali Masood and
Rabeeh Ayaz Abbasi
Journal of Informetrics, 2021, vol. 15, issue 1
Abstract:
During the last two decades, the number of incidents from extremists have increased, so as the use of social media. Research suggests that extremists use social media for reaching their purposes like recruitment, fund raising, and propaganda. Limited research is available to identify rebel users on social media platforms. Therefore, we propose a Supervised Rebel Identification (SRI) framework to identify rebels on Twitter. The framework consists of a novel mechanism to structure the users’ tweets into a directed user graph. This user graph links predicates (verbs) with the subject and object words to understand semantics of the underlying data. We convert the user graph into graph embedding to use these semantics within the machine learning algorithms. Apart from the user graph and its embedding, we propose fourteen other features belonging to tweets’ contents and users’ profiles. For evaluation, we present the first multicultural and multiregional dataset of rebels affiliated with nine rebel movements belonging to five countries. We evaluate the proposed SRI framework against two state-of-the-art baselines. The results show that the SRI framework outperforms the baselines with high accuracy.
Keywords: Rebels; Social network analysis; User graph; Supervised Rebel Identification (SRI); Machine learning (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1751157720306386
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:infome:v:15:y:2021:i:1:s1751157720306386
DOI: 10.1016/j.joi.2020.101121
Access Statistics for this article
Journal of Informetrics is currently edited by Leo Egghe
More articles in Journal of Informetrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().