EconPapers    
Economics at your fingertips  
 

SCiMet: Stable, sCalable and reliable Metric-based framework for quality assessment in collaborative content generation systems

Mohammad Allahbakhsh, Haleh Amintoosi, Behshid Behkamal, Amin Beheshti and Elisa Bertino

Journal of Informetrics, 2021, vol. 15, issue 2

Abstract: In collaborative content generation (CCG), such as publishing scientific articles, a group of contributors collaboratively generates artifacts available through a venue. The main concern in such systems is the quality. A remarkable range of research considers quality metrics partially when dealing with the quality of artifacts, contributors, and venues. However, such approaches have several drawbacks. One of the most notable ones is that they are not comprehensive in terms of the metrics to evaluate all entities, including artifacts, contributors, and venues. Also, they are vulnerable to potential attacks.

Keywords: Quality assessment; Quality metric; Scientometrics; Collaborative content; Attack-resilient (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1751157720306441
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:infome:v:15:y:2021:i:2:s1751157720306441

DOI: 10.1016/j.joi.2020.101127

Access Statistics for this article

Journal of Informetrics is currently edited by Leo Egghe

More articles in Journal of Informetrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:infome:v:15:y:2021:i:2:s1751157720306441