Poincare: Recommending Publication Venues via Treatment Effect Estimation
Ryoma Sato,
Makoto Yamada and
Hisashi Kashima
Journal of Informetrics, 2022, vol. 16, issue 2
Abstract:
Choosing a publication venue for an academic paper is a crucial step in the research process. However, in many cases, decisions are based solely on the experience of researchers, which often leads to suboptimal results. Although there exist venue recommender systems for academic papers, they recommend venues where the paper is expected to be published. In this study, we aim to recommend publication venues from a different perspective. We estimate the number of citations a paper will receive if the paper is published in each venue and recommend the venue where the paper has the most potential impact. However, there are two challenges to this task. First, a paper is published in only one venue, and thus, we cannot observe the number of citations the paper would receive if the paper were published in another venue. Secondly, the contents of a paper and the publication venue are not statistically independent; that is, there exist selection biases in choosing publication venues. In this paper, we formulate the venue recommendation problem as a treatment effect estimation problem. We use a bias correction method to estimate the potential impact of choosing a publication venue effectively and to recommend venues based on the potential impact of papers in each venue. We highlight the effectiveness of our method using paper data from computer science conferences.
Keywords: recommender systems; scholarly communication; treatment effect estimation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1751157722000359
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:infome:v:16:y:2022:i:2:s1751157722000359
DOI: 10.1016/j.joi.2022.101283
Access Statistics for this article
Journal of Informetrics is currently edited by Leo Egghe
More articles in Journal of Informetrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().