Power Laws in altmetrics: An empirical analysis
Sumit Kumar Banshal,
Solanki Gupta,
Hiran H Lathabai and
Vivek Kumar Singh
Journal of Informetrics, 2022, vol. 16, issue 3
Abstract:
Power Laws are a characteristic distribution found in both natural as well as in man-made systems. Previous studies have shown that citations to scientific articles follow a power law, i.e., the number of papers having a certain level of citation x are proportional to x raised to some negative power. However, the distributional character of altmetrics (such as reads, likes, mentions, etc.) has not been studied in much detail, particularly with respect to existence of power law behaviours. This article, therefore, attempts to do an empirical analysis of altmetric mention data of a large set of scholarly articles to see if they exhibit power law. The individual and the composite data series of ‘mentions’ on the various platforms are fit to a power law distribution, and the parameters and goodness of fit are determined, both using least squares regression as well as the Maximum Likelihood Estimate (MLE) approach. We also explore the fit of the mention data to other distribution families like the Log-normal and exponential distributions. Results obtained confirm the existence of power law behaviour in social media mentions to scholarly articles. The Log-normal distribution also looks plausible but is not found to be statistically significant, and the exponential distribution does not show a good fit. Major implications of power law in altmetrics are given and interesting research questions are posed in pursuit of enhancing the reliability of altmetrics for research evaluation purposes.
Keywords: Altmetrics; Exponential distribution; Log-normal distribution; Power Laws; Scientometrics; Social media mentions (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S175115772200061X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:infome:v:16:y:2022:i:3:s175115772200061x
DOI: 10.1016/j.joi.2022.101309
Access Statistics for this article
Journal of Informetrics is currently edited by Leo Egghe
More articles in Journal of Informetrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().